Comment se crée un trou noir ?

Share
Print Friendly, PDF & Email

 Image de synthèse d’un trou noir réalisée sur la base des premières observations du « Event Horizon Telescope » Omar Allam/Shutterstock

Les trous noirs sont des objets astrophysiques fascinants. Depuis un siècle, ils passionnent le grand public ainsi que les physiciens du monde entier, qui les étudient toujours avec grand intérêt. L’un des mystères qui subsistent est leur formation, qui est encore aujourd’hui mal comprise.

Qu’est-ce qu’un trou noir ?

Le concept de trou noir date en France de Pierre-Simon de Laplace (1796), qui se demandait s’il était possible qu’un objet soit tellement dense que sa vitesse de libération (la vitesse minimale pour se libérer de l’attraction gravitationnelle d’un astre) soit supérieure à la vitesse de la lumière (qui vaut environ 300 000 km/s).

La vitesse de libération est la vitesse dont a besoin un corps pour échapper à l’attraction gravitationnelle d’un astre. Sur Terre, la vitesse de libération vaut 11,3 km/s (soit presque trente mille fois moins que la vitesse de la lumière), ce qui veut dire qu’un objet comme une fusée doit atteindre cette vitesse pour pouvoir sortir dans l’espace.

Si la masse de la Terre était concentrée dans une sphère d’environ 9 mm de rayon, la gravité serait beaucoup plus grande, ce qui pourrait alors piéger la lumière. Il faut donc un astre beaucoup plus dense que la Terre pour piéger la lumière.

Cette idée a été reprise en 1916, un an après qu’Einstein a publié la théorie de la relativité générale, par le physicien allemand Karl Schwarzschild : il démontre qu’un objet suffisamment dense peut empêcher la lumière de s’en échapper.

Si de la matière ou de la lumière est située à l’intérieur de l’horizon des évènements d’un trou noir, elle ne pourra pas s’en échapper : cet horizon est la « limite » du trou noir. C’est la surface d’une sphère dont le rayon est appelé rayon de Schwarzschild (qui est donc la « taille du trou noir »). Ce rayon est proportionnel à la masse de l’objet et est très petit : un trou noir d’une masse identique à celle du Soleil aurait un rayon d’environ 3 km (contre 700 000 km pour le Soleil).

Aujourd’hui, grâce à l’évolution des techniques d’observation, il est possible de photographier un trou noir. Voici comme exemple la photo du trou noir au centre de notre galaxie, Sagittarius A*.

« Photo » de Sagittarius A*. Akiyama, Kazunori, et coll.

Les différents scénarios de formation des trous noirs

Il est difficile de savoir comment un trou noir s’est formé. Cependant, différents scénarios de formation des trous noirs existent, et ils dépendent de la catégorie de masse du trou noir.

Dans le cas d’un trou noir de masse comparable à celle du Soleil, on parle de trou noir stellaire. Ces trous noirs se forment par effondrement d’une étoile en fin de vie. Lorsqu’une étoile a transformé en son cœur tout son hydrogène en hélium, la gravité devient plus intense que la pression qui repousse la matière vers l’extérieur, et la matière s’effondre sur elle-même sous l’effet de son propre poids. La densité du cœur devient alors beaucoup plus importante, et il peut se transformer en une naine blanche, une étoile à neutrons ou un trou noir (selon la masse de l’étoile en question). De la même manière, une naine blanche peut s’effondrer gravitationnellement en une étoile à neutron ou un trou noir lorsqu’elle dépasse la masse de Chandrasekhar (environ 1,4 fois la masse du Soleil) ; une étoile à neutron peut à son tour s’effondrer en un trou noir lorsqu’elle atteint la limite de Tolman-Oppenheimer-Volkoff (égale à environ 2,5 fois la masse du Soleil).

Deux trous noirs stellaires peuvent fusionner pour former un trou noir plus massif. C’est ce qui arrive pour ce que l’on appelle des systèmes binaires. Un système binaire est composé de deux étoiles tournant l’une autour de l’autre, plutôt que d’une seule étoile comme dans le système solaire. Un exemple très connu dans la culture populaire est la planète Tatooine de Star Wars, qui a deux soleils.

Certains systèmes binaires sont composés d’un trou noir et d’une étoile, ou de deux trous noirs. Dans ce cas, ces deux astres tournent l’un autour de l’autre en se rapprochant, jusqu’à fusionner. Ceci forme alors un trou noir plus massif que le précédent. La fusion de deux trous noirs a déjà été observée, notamment par le biais des ondes gravitationnelles.

Il existe un autre type de trous noirs : les trous noirs supermassifs, qui ont des masses allant du million à plusieurs milliards de masses solaires. Le trou noir au centre de la Voie lactée, Sagittarius A*, est un trou noir supermassif : il est plus de 4 millions de fois plus massif que le Soleil. Des trous noirs supermassifs ont aussi été observés au centre d’autres galaxies. L’origine de ces trous noirs est encore très débattue. L’une des sources privilégiées actuellement est celle de l’effondrement gravitationnel d’un énorme nuage de gaz dans l’univers primordial.

Longtemps restés des curiosités scientifiques hypothétiques, les trous noirs sont aujourd’hui observés par la communauté scientifique. Beaucoup de mystères subsistent cependant, comme leur formation, mais aussi ce qui se trouve à l’intérieur de l’horizon…


L’auteur aimerait remercier particulièrement Dr Stéphane Marchandon (École de biologie industrielle) pour des discussions intéressantes et des corrections apportées au présent article.

Diane Rottner, CC BY-NC-ND

Si toi aussi tu as une question, demande à tes parents d’envoyer un mail à : tcjunior@theconversation.fr. Nous trouverons un·e scientifique pour te répondre. En attendant, tu peux lire tous les articles « The Conversation Junior ».The Conversation


Romain Codur, Professeur de Physique, Dynamique des fluides et Modélisation, École de Biologie Industrielle (EBI)

Cet article est republié à partir de The Conversation sous licence Creative Commons. Lire l’article original.

Share

Laisser un commentaire